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ABSTRACT

We describe the symmetries present in the point-spread function (PSF) of an optical system either located
in space or corrected by an adaptive optics (AO) system to Strehl ratios of about 70% and higher. We present
a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the
residual phase error over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized
apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric
perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are
two symmetric second-degree terms. One is negative at the center and, like the first-order term, is modulated
by the perfect image’s field strength—it reduces to the Maréchal approximation at the center of the PSF. The
other is nonnegative everywhere, zero at the image center, and can be responsible for an extended halo—
which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes
where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be
exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demon-
strate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles
and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observ-
ing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-

based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.

Subject headings: circumstellar matter — instrumentation: adaptive optics — methods: analytical —
methods: numerical — planetary systems — techniques: image processing

1. INTRODUCTION

The direct detection of extrasolar planets, or exoplanets,
has become a major astronomical and biological focus. The
technical problems that must be overcome in order to image
such objects near their parent stars are formidable. A Jovian
planet is about a million times fainter than the star at a
wavelength of 1.6 um, and a terrestrial planet is 10° times
fainter at 0.8 um. Much effort has been expended on invent-
ing or rediscovering shaped and apodized pupil telescopes
and developing novel coronagraphic techniques to enable
these detections. Many of these pioneering studies assume
perfect optics, with no scattered light, no ghost images, and
a perfectly corrected wave front. Here we admit the possibil-
ity of imperfectly corrected wave fronts and investigate the
structure of the point-spread function (PSF) of a good but
not perfect imaging system through an arbitrarily shaped
and apodized pupil.

We extend earlier work by Bloemhof et al. (2001) and
Sivaramakrishnan et al. (2002) to show that the PSF may be
expanded in an infinite Taylor-like series, with the property
that all even terms in the series are symmetric and all odd
terms are antisymmetric. Thus the sum of this series, the
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overall PSF, need have no particular symmetry. However,
we show that for particular portions of parameter space
(e.g., some telescope aperture geometry, Strehl ratio S, and
angular separation from the PSF center), the sum may be
dominated by one or another individual term. We identify
two such regimes: very high Strehl ratio images (S > 95%),
which are dominated almost everywhere by the antisymmet-
ric first-order term (as described by Bloemhof 2003), and
moderate Strehl ratio images (70% < S < 90%), which are
dominated by a symmetric second-order term in the image
halo, particularly for apodized apertures. In these regimes,
where speckle formation is dominated by a single term in
the PSF expansion, there will be appreciable amounts of
symmetry to the speckle patterns, which may be exploited
for significant gains in signal-to-noise ratios (S/Ns) as part
of the data reduction process.

We also theoretically and numerically demonstrate that
apodizing the pupil reduces the effects of the first-order anti-
symmetric component of the aberrated PSF and allows the
symmetric component to become the dominant aberration
at lower Strehl ratios, as well as for a larger angular extent
than in the case of a completely clear aperture. A knowledge
of these PSF properties could ease the extremely stringent
demands placed on the optical quality of a telescope
dedicated to finding Jovian or terrestrial exoplanets.
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In general, the PSF of an adaptively corrected optical sys-
tem consists of a diffraction limited core (e.g., an Airy func-
tion for a circular aperture) superposed on an extended halo
composed of numerous ““speckles” that result from the
uncorrected components of the wave front. If we character-
ize atmospheric turbulence using Fried’s parameter r(, then
there will be about (D/ry)* speckles present in a halo of size
D/r, comparable to the size of the seeing disk in uncor-
rected images. These speckles fluctuate rapidly on a time-
scale of ro/v (where v is the wind speed), giving speckle
lifetimes around a few hundredths of a second in practice.

Racine et al. (1999) first described the problem of speckle
noise being the dominant noise source in high Strehl ratio
AO images by considering how clumping of uncorrected
light affects the S/N of aperture photometry near bright
stars. Bloemhof et al. (2001) developed a first-order theory
of PSF structure for symmetric, clear aperture telescopes,
and Sivaramakrishnan et al. (2002) developed the complete
second-order expansion of the PSF of a well-corrected
image taken with an arbitrarily shaped and apodized pupil.
We extend the latter work to arbitrary order and explore the
nature of various terms in the infinite series expansion in
order to determine how understanding the partially cor-
rected PSF can help us design instruments to detect faint
structure around stars, with photometry and spectroscopy
of debris disks and exoplanets as our goal.

Bloemhof et al. (2001) showed that first-order speckles do
not appear in dark areas of the underlying monochromatic
perfectly corrected image, describing them as being
“pinned ” to the bright Airy rings on the image. They sug-
gest a “speckle sweeping ™ strategy for the highest Strehl
ratio images, when the first-order term is the dominant aber-
ration. Sivaramakrishnan et al. (2002) demonstrated that
these pinned speckles will still occur near the cores of images
taken with arbitrarily shaped, unapodized entrance aper-
tures and that first-order pinned speckles are part of an
antisymmetric perturbation on the perfectly corrected PSF
for any aperture geometry. Knowledge of this antisymmetry
can be used to improve ways of obtaining and reducing high
Strehl ratio imaging data. Observing strategies can be modi-
fied to exploit this phenomenon by selecting a filter band-
pass that enables these pinned speckles to be seen, and
therefore removed from the data, thereby increasing the
dynamic range of the observations (Bloemhof 2003). In this
work we show that even simple apodization of the entrance
pupil suppresses the first-order speckle term in regimes
accessible from either space- or ground-based telescopes.

In this paper we also examine the two second-degree terms
in the expansion of the PSF: Sivaramakrishnan et al. (2002)
identified one with the Maréchal approximation or the Strehl
intensity (Born & Wolf 1993) and the other with an extended
“second-order halo.” For a given aperture, their sizes are
entirely dependent on the spatial frequencies present in the
phase function. We show that one of the second-degree
terms, which we call the second-order Strehl term, dominates
the first-order term near the image core.

The second-order halo term sets a Strehl ratio—dependent
theoretical limit on the dynamic range achievable with
speckle sweeping observing strategies. This term also sets a
dynamic range limit for diffraction-limited single-stage
coronagraphy on future EXAO systems (which will deliver
Strehl ratios of ~90% or higher; Makidon et al. 2003), as
well as dedicated, space-based high dynamic range imaging
telescopes such as Jovian or terrestrial planet-finding mis-

sions, unless multistep coronagraphic methods (Labeyrie
2003; Soummer 2002) are implemented.

2. THE FULL EXPANSION FOR THE
PARTIALLY CORRECTED PSF

We briefly restate the notation of Sivaramakrishnan et al.
(2002); the telescope entrance aperture and all phase effects
in a monochromatic wave front impinging on the optical
system are described by a real aperture illumination func-
tion A(x,y) multiplied by a unit modulus function
Ay(x,y) = ). Aperture plane coordinates are (x,y) in
units of the wavelength of light, and image plane coordi-
nates are (£, n) in radians. Deviations from a plane wave are
described by a real wave front phase function ¢ that
possesses a zero mean value over the aperture plane,

[ Apdxdy {
[Adxdy M)

While the choice of the phase zero point is arbitrary, select-
ing the wave front piston origin using equation (1) enables a
clean separation between the two second-degree terms in
our expansion, as we will show in § 3.3.

The perfect optical system with no phase aberration has
the aperture illumination function A.

We assume that the electric field in the image plane is
described by the Fourier transform (FT) of the field in the
aperture plane (e.g., Goodman 1968). We write the FT of a
function 4 as a and the FT of ¢ as ® by changing case to
indicate a transform. The aperture illumination function
with phase aberrations is

Apo = AAy , (2)

with a corresponding ““ amplitude-spread function” (ASF)
of apo = axa, (where x denotes the convolution opera-
tion). The ASF is proportional to the electric field in the
image plane and is a complex-valued function of angular
image plane coordinates (£,7). The PSF of this optical
system is

PAO = AAOUAQ (3)
(where the * operator denotes the complex conjugate). At
any location in the pupil plane, Axo can be expanded in an

absolutely convergent series in ¢ for any finite value of the
phase function

Aro=AAy=A(1+ip—¢*/2+...). (4)

We have to Fourier transform this in order to get the
ASF and PSF. In order to write this economically, we
define the n-fold convolution operator =" by, e.g.,
xx>y=xxyxy*y. For completeness we note that
xx0y=x

Since the Fourier transform is a linear operator, we may
take the transform of the series expansion of Axp in
equation (4) on a term-by-term basis, obtaining

aAO:ZH(a*k ®), (5)
k=0
which possesses a complex conjugate of
(=) kg
ajgozzT(a*@). (6)

k=0
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The PSF pao = aAoa/’:O is given by the double infinite sum
00 00k N
=33 sk ) Gl @
k=0 j=0 J:
We can reexpress this more usefully by grouping all terms of

the same total order in ® and ®*—that is, terms of constant
n = j + k (as in the binomial theorem),

ZZk,

n=0 k=

W )

a*k ) (a* K"F D)

In other words, the nth order portion of the expansion of
the PSF will be given by

=1 Zkln_

where we have factored out the appropriate power of i.

Since 4 and ¢ are real functions, ¢ and ® are Hermitian;
i.e., their real parts are symmetric functions of their
arguments, and their imaginary parts are antisymmetric
functions (this, and all other Fourier results we use, can be
found in Bracewell 1986). Furthermore, multiplication,
addition, subtraction, and convolution of Hermitian func-
tions produce Hermitian functions, so every component of
each term in equation (7) is Hermitian.

The sum in equation (7) can further be broken into parts
by grouping pairs of terms in which the power of « in one
matches the power of ¢* in the other. This general expan-
sion predicts a pinned term at every order; the first and last
terms in the nth order portion of the expansion (eq. [7])
contain either only a or a* as a factor—the sum of these pro-
duces a real contribution to the PSF that is modulated by
the ASF a.

—k
(a+* @) (a* A" %) | (7)

2.1. Minimum Speckle Size

Since the phase function ¢ (or any power of it) never
appears in the aperture illumination function in equation
(4) by itself but is always multiplied by the aperture function
A, we only find terms such as A¢, A¢?, ... in the expansion
for Aao. Therefore, the FTs of these terms, a* ®,a* ®,
ax>®, ..., are the only way we find ® in the eventual PSF.
This means that all structure in the FT of the phase function
¢ is always convolved with the ASF. Even the sharpest
peaks that might occur in this transform will always appear
in the PSF after such convolution. Since the width of a is just
the angular resolution of the telescope, the sharpest speckles
in the PSF cannot be smaller than the angular resolution of
the telescope. Since the expansion (4) converges absolutely,
this statement’s veracity does not depend of the aberration
being small compared with unity; it is a general result valid
for any PSF—speckles cannot be smaller than A/D.
Although there are simpler ways of demonstrating this fact,
we use this argument as an exercise in tracing commonly
used descriptions of optical aberrations to features in the
PSF.

2.2. Symmetry of Even and Odd Terms

All terms of odd degree (i.e., p,,, with n being an odd num-
ber) will be antisymmetric with respect to the image origin.
This follows by precisely the same logic originally applied to
the first-order term: odd terms are given by i times the imag-
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inary part of a Hermitian function, which is itself anti-
symmetric. Likewise, all even terms must be symmetric,
because they are given by the real portions of Hermitian
functions. What is potentially useful for increasing dynamic
range of the direct imaging described here is the fact that
under different conditions (Strehl ratio, separation from the
central star, pupil geometry, and apodization), different
terms dominate the speckle noise in the image. Knowledge
of the expected symmetry or antisymmetry can be used in
instrument design, filter specification, and data reduction to
improve the S/N for the same depth of exposure.

2.3. The Effect of Scintillation

The above-derived expansion holds true for arbitrary
entrance apertures 4. We may model scintillation as a
variation in amplitude at the telescope aperture: 4 =
Ae[l + €(x, )], where Ay is the telescope aperture function
in the absence of scintillation and ¢ is a zero mean function
representing the change in amplitude across that aperture
due to scintillation (termed “flying shadows” by Dravins
et al. 1997a). It is then seen that the same expression for the
expanded PSF continues to hold, with a being replaced by
ax* (6 + E) (where ¢ is a Dirac delta function, the FT of the
constant 1, and E is the FT of ¢). Therefore, scintillation
may redistribute power in a PSF compared with the PSF
without scintillation but will always affect symmetric speck-
les in a symmetric manner, and vice versa for antisymmetric
speckles. Random changes in aperture throughput will also
modify the perfect PSF (term 0), scattering some light into
the dark rings of the Airy pattern; this will allow pinned
speckles to begin appearing in these dark rings as well.

2.4. AO Control Radius

It is instructive to consider the idea of the AO control
radius fao = \/2d (where )\ is the observing wavelength
and d is the interactuator spacing as projected back to the
primary mirror—that is, the physical actuator spacing times
the magnification factor from DM to primary; here we
assume that projected wave front sensor [WFS] subaperture
spacing and DM actuator spacing are comparable). This is
an angular distance in the image plane, resulting from the
inability of the deformable mirror to compensate for wave
front aberrations beyond its spatial Nyquist frequency. Cor-
recting the wave front on spatial scales up to but not beyond
the spatial frequency of 1/2d pulls light from an extended
halo into the core of the PSF. As Strehl ratios get higher,
when first the extended Maréchal [S ~ exp(—o )] and then
the Maréchal (S ~ 1 — aé) approximations become valid,
the halo outside the AO control radius f,o becomes less
and less affected by improved wave front correction within
the AO spatial frequency control band. When the second-
order expansion of the PSF is a good representation of the
PSF, correcting ¢ at a spatial frequency of 1/2d affects the
PSF up to an angle 2050 = A/d from the image center,
because terms that are quadratic in the Fourier transform of
the phase (®) contain the ““doubled  spatial frequency due
to the multiplication of two functions containing signal at a
spatial frequency of A\/2d. By the time the second-order
terms are negligible, and the first-order expansion of the
PSF is applicable, correcting the wave front at scales of
1/2d results in improvement of the PSF only within a radius
Of@Ao.
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As a result, for Strehl ratios of about 80% or lower, the
idea of an AO control radius holds in only an approximate
sense, but as Strehl ratios climb into the 90% and higher
range, a0 becomes a more rigorous limit on the region of
the PSF that is controlled by active or adaptive optics. This
is a direct reflection of the way e¥ is approximated by a
first-, second-, or higher order expansion in x.

It has been suggested that the performance of an AO
coronagraph can be improved by using the light that would
otherwise have been blocked by the image plane mask for
wave front sensing. Rather than using a dichroic to split
light for WFS, a mask fabricated as a hole in a mirror can be
used to split the light, with the reflected portion going to the
science camera and the portion that passes through the hole
(the core of the Airy function) going to the WFS. The appeal
of this approach is that it could greatly reduce the amount
of non—common path optics between the WFS and science
camera light paths.

However, the existence of the AO control radius limits
the effectiveness of this approach: Passing the light through
a pinhole before sensing acts as a filter limiting the spatial
frequencies that reach the WFS. For reasonable spot sizes,
this will limit AO performance by preventing correction of
high spatial frequency aberrations. For example, a Lyot
spot that is SA/D in diameter will pass only spatial frequen-
cies of five cycles across the primary diameter D or lower. In
this case the effective AO control radius will be set, not by
the Nyquist frequency of the WFS, but by the maximum
spatial frequency passed by this stop. In the case in which
the same wavelength is used for science and WFS, no useful
correction is possible with this approach: the effective AO
control radius will equal the spot radius. Speckles outside
the Lyot spot correspond to aberrations on higher spatial
frequencies than reach the WFS and thus will not be
corrected. If different wavelengths are used for WFS and
science, then the AO control radius can be made larger than
the spot diameter, but by a factor no greater than Ay /Awrs.
This places a fundamental limit on the maximum Strehl
ratio achievable with such systems, no matter how many
WES subapertures or DM actuators they may have.

However, as Macintosh et al. (2002) and Poyneer &
Macintosh (2003) demonstrate, matching the hole size and
geometry to that of the wave front sensors can improve AO
system performance. By setting the hole to the size that cor-
responds to the spatial Nyquist frequency of the WFS (that
is, by making the hole radius equal to the AO control
radius), this approach will prevent aliasing of spatial fre-
quencies in the WFS, by passing only those aberrations that
fall within the sensing bandpass of the wave front sensing
system. This will result in improved WFS performance by
eliminating aliasing of uncorrectable higher spatial frequen-
cies. However, the larger pinhole required for this approach
is too large for use as a Lyot spot, so this approach will still
require a beam splitter to separate light for WFS and
science.

3. THE SECOND-ORDER EXPANSION FOR THE
PARTIALLY CORRECTED PSF

In order to demonstrate the use of our general expansion
for the PSF, we rederive the second-order expansion given
by Sivaramakrishnan et al. (2002) from equation (7). This
second-order truncation is valid when the largest
absolute value of the phase aberration within the aperture is
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significantly less than unity. Evaluating the expression in
equation (7) for n = 2, we find that

pr =1 %(a*o D) (a* +* 0F) +_1—'1(a x @) (a™ ' D)

1 2 * 0 g
+i(a* D)(a™ = D7) .

Combined with similar evaluations for the zeroth and first-
order terms, this yields the second-order approximation to
the PSF of

PAao =po+p1+p2
=aa* —ila(a® « ®*) — a*(a x D)]
+ (a % @) (a* x ¥)
—La(@* *@* «®*) +a*(ax 2+ ®)], (8)

which agrees with the result found in equation (3) of
Sivaramakrishnan et al. (2002). We now discuss the
properties of each term in this expression.

3.1. The Perfect PSF: py

In the following discussion we refer to py = aa™ as the
perfect image. For typical clear (i.e., unapodized) apertures,
po possesses bright and dark rings called Airy rings.
Apodization generally fills the dark rings with light and
results in a PSF with a greater FWHM intensity but with
reduced diffracted light at large radii. Using Rayleigh’s
theorem, we note that

/podfdn:/Azdxdy:/AAoAiodxdy. 9)

The physical interpretation of this is simply that whatever
power enters the optical system and is not absorbed by
apodization is relayed to the final perfect image. Phase aber-
rations contribute no power to the image; they just rear-
range the distribution of light. By using the power theorem
of Fourier theory, one can show that the total power from
the term p,, contains a multiplicative factor of

)nfk

N - (_1
i ; o a0 (10)

This factor is zero for all n > 0, since it is precisely 1 /n! times
(1 —1)" (as can be seen by using the binomial theorem to
expand the latter quantity). The net power contained in
every term except py is therefore zero.

The perfect PSF py is symmetric: po(&,n) = po(—&, —n).
The fact that it is the power spectrum of 4 means that it is
the FT of a symmetric, real function, specifically, the auto-
correlation function of 4. Therefore, it possesses a sym-
metric real part and a zero imaginary part, regardless of
details of the aperture geometry.

3.2. Pinned Speckles: p;
The first-order term,
p1 = —ila(a® « ®*) — a*(a x ®)]
— 2Im{fa(a” * )]} , (1)
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has been discussed for arbitrary aperture geometry and
apodization by Sivaramakrishnan et al. (2002). It was first
described as being a pinned term by Bloemhof et al. (2001).
We reiterate here that this term is antisymmetric; any bright
blob (due to the first-order pinned term) on a bright Airy
ring must be accompanied by a corresponding dimming at
the diametrically opposite point on the ring. Its antisymme-
try forces p; to vanish at the center of the image, i.e., at the
central peak of the PSF for typical apertures. This term can-
not affect the Strehl ratio of the image, even though it is the
dominant cause of decreased dynamic range within a few
diffraction widths of the source in broadband AO imaging
at high Strehl ratios (Sivaramakrishnan et al. 2003). This
pinned speckle term is entirely due to the antisymmetric
component of the function A¢, because a purely symmetric
function’s Fourier transform contains no imaginary
component.

3.3. The Extended Halo and the Strehl Intensity: p;

Our choice of the phase origin that sets the aperture-
weighted mean of ¢ to zero results in a x ® being zero at the
image plane origin. (We choose our image plane origin to be
the centroid of the intensity distribution, which is equivalent
to a zero aperture-weighted mean slope of the wave front.)
This enables a natural division of the second-order contri-
bution into two terms with different behavior in the image
plane,

2 = (ax®)(a* x d¥)
—a(a® «@* «@*) + a* (ax 2+ ®)] . (12)

The first term in the above expression is real and non-
negative everywhere, as it is of the form zz*, where z is a
complex number. However, because of equation (1), it is
zero at the origin (like the first-order pinned speckle term)
and therefore does not affect the Strehl ratio either. It is
merely the power spectrum of the real function A¢, a fact
that ensures its symmetry about the image origin. The slope
of a Kolmogorov spectrum atmospheric phase function
comes through to the image in this term to form the halo of
a well-corrected stellar image outside the AO control radius
Oa0 = A/2d.

This term contributes to decreased dynamic range every-
where, because it is not modulated by the Airy pattern. It is
the dominant term in the extended halo, as its falloff with
radial distance from the core of the PSF is set solely by the
spatial frequencies present in the phase function. It will
place second-order speckles in the dark Airy rings of a
monochromatic PSF and will therefore set the ultimate
limits on the dynamic range of any observational speckle
sweeping techniques. We denote this term by p hato-

The perfect PSF taken together with the second second-
degree term is the Strehl intensity (Born & Wolf 1993). Like
the first-order term p;, this term is pinned to the bright Airy
rings, because it is also modulated by the size of the ASF.
Combining this with the fact that it is a second-degree term
suggests that it is probably not significant outside the first
few Airy rings. This term is also symmetric, because it is the
real part of a Hermitian function (so the entire second-
degree contribution to the PSF is symmetric). At the image
center it reduces the perfect PSF by a(0) multiplied by the
value of (a* ® % ®) at the origin. The former quantity is
| Adx dy; the latter is [ A¢? dx dy. For a clear aperture with
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area A this is merely 4203, which is the well-known
Maréchal approximation relating the Strehl ratio S to the
variance of the phase over the aperture o2 at high Strehl
ratios S = exp(—o02) ~ 1 — o2. For apodlzed apertures this
ylelds a modlﬁed form of tdile Maréchal approximation,
since the phase variance is weighted by the apodization. We
denote this term by p» sireni-

As mentioned in § 2, choosing the phase origin to ensure
that the mean of the phase (weighted by the aperture
throughput) is zero (eq. [1]) enables the different natures of
the two contributions to the second-degree term in the
partially corrected AO PSF to be easily distinguished.

3.4. A Numerical Example

Figure 1 shows a 94% Strehl ratio PSF and its first- and
second-order terms. The top left frame shows the numerical
monochromatic PSF p (with a logarithmic stretch) of a
simulated image formed by a circular, unobstructed aper-
ture on a twice Nyquist-sampled pixel scale. Tip-tilt errors
were removed by ensuring zero mean X and Y tilts of the
incoming phase screen over the aperture, so the image cen-
ter is known a priori. The top middle frame shows the
numerical PSF with the perfect PSF subtracted from it,
(p — po), on a linear stretch. The top right frame shows the
first-order pinned speckle term p; with the same stretch as
the top middle frame. The similarity between p; and (p — po)
is obvious in the inner two Airy rings of these two frames.

The antisymmetry of p; is also apparent in this frame.
The total intensity in this frame is zero. The bottom left
frame shows the second-order halo term p; pajo (on a linear
stretch symmetric about zero, with black being assigned to
the minimum value of the p sirenl term —0.06, which occurs
at the image center). Its intensity is nonnegative everywhere
and zero at the image center. The bottom middle frame
shows the pinned, second-degree term ps sirehl (0n the same
stretch as the pa palo frame). It is negative at the center and is
the only term in the second-degree expansion of the PSF
that reduces the Strehl ratio. As noted above, this term,
taken together with the perfect PSF (i.e., po + p2.stren) 1S
called the Strehl intensity (Born & Wolf 1993). The expres-
sion po + p2 swent Teproduces the Maréchal approximation
of classical optics theory for the image intensity at its center
at high Strehl ratios. It contains the perfect ““amplitude
spread function” (the image field strength) as a factor, so
D2.sweht could decay more rapidly with distance from the
image center than the halo term p, pao in ground-based AO
images, depending on the power spectrum of the phase aber-
ration and pupil apodization. The bottom right frame
shows the sum of both second-degree terms (on the same
stretch as each second-degree term’s images).

4. NUMERICAL EXPLORATION OF SPECKLE
SYMMETRY MAGNITUDES

The relative magnitude of each term in the series expan-
sion of the PSF depends on Strehl ratio, aperture shape, and
aperture apodization. In this section we present examples of
the behavior and relative sizes of some of the lower order
terms. We simulated AO-corrected PSFs from four circular
aperture types: circular apertures with and without central
obscurations, and clear and apodized apertures. For each of
four different aperture types (all based on the 3.6 m AEOS
telescope on Mt. Haleakula) we ran a set of simulations,
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FiG. 1.—Shows that a 94% Strehl ratio PSF p, formed by a circular aperture, can be decomposed into individual terms in the power series in the Fourier
transform of the phase over the aperture. The antisymmetry of the first-order term p; and the symmetry of the second-order terms are apparent. The positive
halo term p> nalo 1S zero at the image center, as is the pinned first-order term p;. At these Strehl ratios the image degradation is dominated by the pinned

second-order term py_syehl (see text for details).

varying the number of AO actuators from 10 to 110 across
the primary, which resulted in Strehl ratios ranging from
50% to 98%.

For each simulation we generated realizations of
Kolmogorov spectrum turbulence phase screens and, fol-
lowing the methods described in Sivaramakrishnan et al.
(2001), smoothed the phase screens with a high-pass
parabolic filter to mimic the action of an AO system, viz., a
parabolic filter in spatial frequency space up to a Nyquist
spatial frequency corresponding to the number of actuators
across the pupil. This simple model of AO has been vali-
dated with fits to 70% Strehl ratio K-band data from the Pal-
omar AO system (Oppenheimer et al. 2000) and 20% Strehl
data from the 3.6 m AEOS telescope (Makidon et al. 2003).
Scintillation effects (amplitude fluctuations across the pupil)
have not been taken into account here, but simple calcula-
tions following the approach of Angel (1994) indicate these
might reduce our calculated Strehl ratio by about 5%-10%
in the H band. We reiterate the point of § 2.3 that scintilla-
tion will effect symmetric speckles in a symmetric manner,
and so we do not expect it to substantially change our con-

clusions here. (See also Dravins et al. 1997b, 1998 for
additional discussion of the effects of scintillation.)

We calculated the PSF of this partially corrected wave
in a perfect imaging system by the methods of Fourier
optics, using image plane pixels of angular size A\/8D in
order to resolve speckles clearly. We used an input pupil
128 pixels across, in a zero-filled array 1024 pixels on a
side, thus ensuring fine sampling in our monochromatic
image. We also calculated each term in the full expansion
out to fourth-order explicitly from the input phase
screens and their transforms. The Strehl ratio of the
image in Figure 1 is 94%.

Before creating the image from the input phase screen, we
subtracted off the mean tilt of the phase function over the
clear aperture. Even though the first-order term would still
retain all the properties predicted by our theory, we felt that
a large tip-tilt error obscured the more interesting higher
spatial frequency wave front aberrations that are found a
few diffraction widths from the core of the image.

Here we describe some general properties of the results
and show representative plots of 85% Strehl ratio images.
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4.1. Unapodized Apertures

At the currently achievable Strehl ratio of 60%, the
second-order Strehl term is the dominant perturbation to
the perfect PSF py on the central Airy peak, while the first-
order term is most important on the first one or two Airy
rings. Outside this, the second-order halo term that is largest
is magnitude. Palomar and Lick observations with Strehl
ratios around 60% often show a three-lobed pattern of
pinned speckles on the first Airy ring (Bloemhof et al. 2001;
Lloyd 2002), which may be due to the dominance of the
first-order term there.

By a Strehl of 80%, the first-order term dominates on the
inner three or four Airy rings, while the second-order halo
term is responsible for most of the speckle power outside of
the eighth Airy ring; the first- and third-order terms are
down by a factor of a few relative to the symmetric second-
order halo term (see Fig. 2). In this regime data reduction
techniques that take advantage of the symmetry of the halo
speckles may prove useful.

At Strehls above 90%, the second-order term decreases
in magnitude significantly as more power moves into the
diffraction limited core and does not dominate until 15 or
more Airy rings out. In this regime, data reduction tech-
niques exploiting the antisymmetry of the first-order term
should be useful for the inner core of the image. This
effect is more pronounced in an apodized pupil, as we
discuss in § 4.2.
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As Strehl ratios rise above about 98%, the first-order term
increasingly dominates throughout the entire PSF outside
the core.

The presence of a secondary obscuration transfers some
power from the core of the unobscured aperture PSF out to
the secondary’s Airy rings. It therefore similarly transfers
power into the pinned first-order term, resulting in a larger
magnitude for this term in the outer portions of the PSF,
making it closer in importance to ps syen in the halo, as
shown in Figure 2. This reduces the dominance of the sym-
metry in that region and will therefore lower the effective-
ness of speckle symmetry subtraction for S/N gain
compared with unobscured apertures.

4.2. Apodized Apertures

The idea of telescope apodization has been explored in
several studies (e.g., Black 1980; Watson et al. 1991;
Nisenson & Papaliolios 2001; Aime, Soummer, & Ferrari
2002; Soummer, Aime, & Falloon 2003). These pioneering
efforts focused on how apodization affects PSFs of perfect
or near-perfect optical systems. Nisenson & Papaliolios
(2001) studied the effectiveness of apodized square apertures
for detection of Earth-like planets from space, arguing that
apodized square apertures had superior performance to
circular apertures along certain position angles. Aime et al.
(2002) and Soummer et al. (2003) derived optimized
apodizations for circular aperture telescopes equipped with
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Fic. 2.—Radial profiles of the absolute value of the first few terms in the expansion of the PSF in terms of the Fourier transform of the phase over the
aperture, as well as the total resulting PSF, and the residual (that is, the sum of terms 3 through infinity), in simulations of the 941 actuator AO system of the
AEOS telescope on Haleakala. We plot the absolute value rather than average because the annular mean of the first-order antisymmetric term is identically
zero everywhere. The left-hand panel shows results for an unobscured aperture. Outside of about 10 A\/D the second-order halo term is clearly the dominant
term by about an order of magnitude above both the first-order term and the residual term (which itself is primarily due to the third- and fourth-order halo-like
terms at this Strehl ratio). A secondary obscuration puts more power into the odd Airy rings, increasing the pinned first-order term for those rings (right-hand
panel). This secondary obstruction decreases the separation between the first and second-order terms and will reduce the effectiveness of speckle symmetry

techniques for noise reduction.
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Lyot coronagraphs, which they conclude are preferable to
square apertures for high dynamic range imaging. Here we
inspect the role apodization plays in speckle suppression at
high Strehl ratios.

Apodization reduces the wings of the perfect unobscured
aperture PSF, so all pinned speckle terms also decrease in
size. This causes the second-order halo term to become
dominant at a lower Strehl ratio than on a comparable
unapodized telescope. Apodization is therefore beneficial
not just on telescopes with perfect optics but on real optical
systems as well. This has been known informally for
several years (C. Ftaclas 1997, private communication).
Breckinridge & Oppenheimer (2003) point out that polar-
ization effects from thin reflective films produce a slight nat-
ural apodization (of order a few percent) in all concave
telescope mirrors, even those that are not intentionally apo-
dized. We look at residual speckle structure in high Strehl
images on pupils with a simple linear apodization (transmis-
sion changes linearly from 0 at pupil edges to 1 at its center;
in order to demonstrate speckle suppression caused by sim-
ple linear apodization. Antisymmetric pinned speckles are
the dominant noise source on a 98% Strehl image on clear
apertures (see § 4.1). On a circular apodized pupil we find
that between Strehl ratios of 80% and 97% the symmetric
second-order p; halo term is the dominant term by a factor of
around 10 outside the first few Airy rings (Fig. 3). This sug-
gests that Lyot coronagraphs on such pupils would exhibit
significant speckle symmetry. When Strehl ratios rise past
about 97% the pinned antisymmetric first-order term p;
starts to dominate larger and larger areas around the image
core. Thus for terrestrial planet finding from space the linear
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pinned speckle term is probably the dominant cause of
speckle noise. As Bloemhof (2003) suggests, observing strat-
egies dedicated to utilizing this property can be used under
such conditions. However, for EXAO applications from
ground-based telescopes, apodized pupils can be beneficial
even in the 75%-95% Strehl ratio regime.

4.3. Implications for Coronagraphy

We simulated a coronagraphic image using five inde-
pendent realizations of a Kolmogorov spectrum phase
screen incident of the aperture of an 8 m class telescope
and a Fried length ro = 80 cm at the center of the H
band. We model the effect of a 4000 actuator AO system
with 64 actuators across the aperture on these phase
screens and use a hard-edged coronagraphic occulting
spot 4\/D in diameter with a matched, optimized Lyot
pupil stop chosen in the manner described in Sivaramak-
rishnan et al. (2001). We did not include scintillation
effects, image placement error on the stop, or scatter
from mirror imperfections or dust in our simulation. The
simulated AO system produces a Strehl ratio of 98% (i.e.,
the phase aberration alone is responsible for a 2% Strehl
hit). Other sources of scattered light will further degrade
the Strehl ratio. Figure 4 shows that at higher Strehl
ratios, an understanding of image symmetry properties
can improve coronagraphic design, use, and data reduc-
tion methods. The benefits of this understanding increase
as the Strehl ratio increases, especially in space-based
imaging on very stable telescopes.
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FiG. 3.—Identical to Fig. 2, except a

simplest possible ”” apodization has been applied to the primary; throughput changes linearly from 0 at the edges of

the aperture to 1 at the center. No attempt has been made to optimize this apodization, and it is expected that more sophisticated apodizations will result in
better performance. However, even this simplistic technique dramatically reduces the perfect PSF and first-order term, while the second-order halo is affected
very little. If speckle symmetries are exploited to subtract off this term, the overall image halo will be reduced by nearly an order of magnitude.
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FI1G. 4.—Top left: Shows a simulated short exposure monochromatic coronagraphic image from an 8 m telescope at the central wavelength of the H band.
Co-added PSFs from five independent realizations of Kolmogorov spectrum phase screens, with rp = 80 cm are shown. The simulated AO system extrapolates
Palomar AO performance to a 4000 actuators (71 across the primary) on Subaru, following Sivaramakrishnan et al. (2001). Scintillation has not been modeled
explicitly. The Strehl ratio of the direct image is 98%; 97.6% of the incoming intensity has been blocked by an optimized Lyot coronagraph with an image plane
stop diameter of 4)\/D radians. All four panels are on the same logarithmic scale. Top right: Top left image rotated by 180° about its center. Bottom left:
Symmetric component of the original PSF, viz., half the sum of the original image and the rotated image. Bottom right: Absolute value of the antisymmetric
component of the PSF, which is half the difference between the original image and the rotated image. A close inspection of this frame shows that much of the
antisymmetric component of the speckle is generated by the presence of the secondary obscuration (which we modeled as being approximately 15% of the

primary diameter).

4.4. Obscured Apertures

If even a small secondary obstruction is present, the
pinned terms (p; and p» syent) Will not die off as quickly as
the corresponding term for an unobstructed aperture. This
consideration could be relevant in methane-on and
methane-off bands around 1.6 um, for example, since their
fractional bandpasses (about 1/20) produce visible Airy
rings out to several A\/D. This argument adds weight to
those presented in Tokunaga et al. (2003) for the off-axis
design of a dedicated EXAO telescope.

An inspection of the antisymmetric component of the
simulated 8 m ExAO coronagraphic image in the bottom
right-hand panel of Figure 4 reveals the fact that the
dominant cause of speckles within the first few Airy rings in
this image is the increased Airy ring intensity due to the
presence of a small secondary obstruction. Coronagraphic

performance on ground-based ExAO systems is therefore
significantly reduced by even small secondary obstructions.

5. DISCUSSION

The expressions derived for the expansion of the point-
spread function are fully general for any telescope aperture
and wave front phase. However, our statements as to which
term of that expansion dominates under given conditions
are fundamentally statistical in nature, contingent on the
assumption of Kolmogorov turbulence, which is spatially
filtered by an adaptive optics system as described above.
The presence of non-Kolmogorov atmospheric disturban-
ces, or of static errors in the telescope or instrumental opti-
cal system, may change the relative importance of the
various terms. In particular, further work is necessary to
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ascertain the magnitude of the symmetric halo term for
space-based telescopes that may possess an entirely different
power spectrum of wave front errors.

Nonetheless, our theoretical and numerical results have a
direct bearing on current EXAO coronagraphs under con-
struction: the Lyot Project coronagraph on the 941 channel
AO system on the 3.6 m AEOS telescope is due for first light
in late 2003 (Oppenheimer, Sivaramakrishnan, & Makidon
2003); and XAOPI, a coronagraph on an 8-10 m class tele-
scope (Macintosh et al. 2002), is projected to begin observa-
tions in 2007. Strehl ratios of 85%-95% at a wavelength of
1.65 um are predicted for these imagers (Macintosh et al.
2002; Makidon et al. 2003). AEOS and Keck noncorona-
graphic infrared data taken recently will be analyzed for the
presence of features whose existence we have predicted.

By extending the second-order expansion of
Sivaramakrishnan et al. (2002) to higher orders and
computing individual terms for typical realizations of AO-
corrected atmospheric phase aberrations, we have shown
when the second-order theory is applicable. We also explain
how apodization of the entrance aperture makes a difference
to achievable dynamic range when the images are not per-
fect. Recent work (Soummer et al. 2003) has shown that
optimally apodized aperture coronagraphs are more effi-
cient than classical Lyot coronagraphs at suppressing the
light from perfectly corrected stellar wave front; our
analysis demonstrates ways of determining when such apod-
ization will help increase dynamic range with instruments
that are currently in use or are under construction at the
moment. Our work can also be applied to coronagraphic
imaging to gain theoretical insight into the sensitivity of
different coronagraphic designs to residual wave front
aberrations. Such understanding can affect the design of
space-based telescopes dedicated to discovering Jovian and
terrestrial exoplanets.

Our analysis of the properties of the partially corrected
image might change the way the search space of AO obser-
vations is modeled, thereby changing survey strategies and
telescope and AO system design. Clearly, the fractional filter
bandwidth will limit the number of dark rings visible in an
image. The presence of a secondary obstruction will also
affect the dynamic range available to AO systems because of
the more complex distribution of dark rings and the slower
drop-off of the perfect PSF with radius, so first-order
speckles will affect a larger area than in a system with an
unobstructed pupil. However, at Strehl ratios of 85% and
above, pupil apodization can improve dynamic range
significantly close to the on-axis object.

When reducing data, the antisymmetry of the first-order
speckles is prior information that should be fed into decon-
volution approaches. Farther out from the center of the
image, if the symmetric halo dominates noise, a different
data reduction strategy is recommended. Aperture apodiza-
tion and the shape of the power spectrum of the aberration
affects where such a transition occurs in the image plane.
The perfect PSF can also be folded into the deconvolution,
because the integrated power from any individual term in
our expansion is zero: each term merely redistributes power
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within the image. Depending on observing conditions and
instrument performance, a knowledge of the properties of
the partially corrected PSF can be used to improve the
detectability of faint structure near bright targets.

In the case in which a particular symmetry dominates the
speckle pattern, the signal-to-noise ratio may be substan-
tially improved by combining the image with a 180° rotated
version of itself. This is essentially a variation on the PSF
subtraction technique, in which the star serves as its own
PSF reference when suitably rotated. This avoids the com-
plications inherent in using a different star as a PSF refer-
ence, at the cost of reducing the overall spatial information
available. This cost is not expected to be problematic for
detection of point sources, although it may limit the applic-
ability of this technique for the study of extended sources
such as circumstellar disks.

In ground-based ExAO applications, our analysis is rele-
vant to the choice of filter bandwidth. Our results can also
be used to optimize the length of rapid exposures in methods
that ultimately trace their origins to the dark speckle
method (Labeyrie 1995). Larger filter bandwidth smears
speckle out radially, and a longer exposure places more
independent speckles all over the image. Both these effects
cover the image with more uncorrected light. Optimized
dark speckle techniques must balance detector read noise
considerations against photon statistics, speckle dwell
times, and the effect of a finite filter bandpass (e.g.,
Boccaletti, Moutou, & Abe 2000).

The PSF properties we describe here will be even more
useful for long exposures on stable, space-based telescopes,
since in that case speckles are extremely long-lived. A
knowledge of expected speckle symmetries can be combined
with the spectral approach of Sparks & Ford (2002) to
improve the dynamic range limits derived in that work. An
understanding of the theory presented here can yield
improved instrument and detector design, observing strat-
egies, and data reduction methods in both space- and
ground-based high dynamic range astronomy, which could
lead to reducing the stringency of the specifications of the
optical quality of a terrestrial or Jovian planet-finding
telescope.
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